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Abstract-Formulae for the bifurcation of free-free, rectangular, isotropic, thin film/substrate
plates under the action of intrinsic film stress and initial strain are developed. The formulae are in
terms of fundamental material properties and plate parameters and are presented in a compact
form. Bifurcation behavior over a range of material and geometric combinations, as well as limiting
cases, are investigated.

INTRODUCTION

Bimaterial plate systems are prone to deflect under the influence of inelastic or initial stress
and strain. The former occurs in the process of deposition of films onto substrates (Stoney,
1909) ; the films develop intrinsic stresses which alone are sufficient to cause deflection, but
also accrue material properties different from the substrate, even when of the same material
composition. The latter occurs under a temperature change in systems having a mismatch
in properties (Timoshenko, 1925). Both phenomena may occur simultaneously. Under
sufficiently high magnitudes of such stress or strain, bimaterial plates buckle. Math
ematically their deflection fields bifurcate from a single solution into three solutions, two
of which are stable.

A rectangular plate with free boundaries and composed of a thin film bonded to a
substrate, such that both materials and the layered combination are at most orthotropic,
has been studied by Masters and Salamon (1993, 1994), who employed approximate
solutions of increasing order. An intrinsic stress 0'* in the film and initial strain e* in both
layers, each field uniformly distributed and having equal orthogonal components acting in
the plane, generate deflections in the plate, which is assumed to be held flat during appli
cation of these fields. For deflections which are large with respect to plate thickness, but
small with respect to lateral plate dimensions, these approximations admit nonlinear total
strains given by

a2 w
in = Y~y-2z-aa '. x y

(1)

where w is the plate deflection, x, y and z are Cartesian coordinates and

o = ouo avo (ow) (aw)
Yxv O'l + a + 0 a. (;y X X Y

(2)

and where U
O and V

O are x- and y-directed midplane displacements.
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Admissible fields, such that deflections, slopes and displacements vanish at the center,
are prescribed as

V
O

= B1y+ B 2y 3 + B3 x 2y-b2y 3 /6

IV = (ax2+by2)/2, (3)

where A;, B;, a and b are unknown contants, but a and b denote constant curvature about
the y and x axes, respectively, and are the object of the investigation.

The present paper is motivated by a need to know when bifurcation will occur in a
thin-film system and to enable its calculation simply. Another purpose is to investigate
bifurcation for different material combinations. To achieve tractability, the treatment is
restricted to isotropic materials and to elastic strain fields composed of second degree
polynomials, a lower order formulation given as case 3 in Masters and Salamon (1993) and
case 2 in their sequel (1994). Importantly, this results in a more conservative estimate of
bifurcation and can be achieved without the use of a computer. Further theoretical details
and numerical results, as well as important references to supporting work, are presented
there.

The approach is to minimize the strain energy density, which for each layer n is

U - ~ [e e , ] [Q"] [e e, ]T + [ * *] [e e]Tn - 2 exeyrxy exey IXv CIxCIy exey , (4)

where superscript e denotes elastic strains given by e7 = ei - e~ i = x and y, [Qn] is the matrix
of elastic isotropic constants given in the Appendix, superscript T denotes the matrix
transposed, and inelastic shear strain and intrinsic shear stress is taken as zero. Then, taking
the first variation of the total potential energy of the plate, given by LnS Un dx dy dz, with
respect to the constants A;, B i , a and b, produces a system of equations in terms of bending
curvatures a and b, which reduce to two expressions:

b = _ H j a+H2

H 3 a2 +H4 '

(5)

where the Hi are composite material parameters and H 2 is also a function of intrinsic stress
and initial strain. Specific formulae for these parameters are given in the Appendix.

The solutions for curvature are

a - b = 0 ab = constant. (6)

The first solution describes a spherical deflection shape (equal curvatures) which is stable
prior to bifurcation; the second solution describes the stable transition through an ellip
soidal shape (unequal curvatures) to either of two cylindrical deflection shapes, the occur
rence of either of which is equally likely after bifurcation.

The two corresponding solutions for intrinsic stress CI* are

(7)

where subscripts sand e denote spherical and elliptical deformation states, respectively,
H'2 is a composite material parameter and H~ is a combination of composite material
properties and initial strain, both given in the Appendix.

A plot of intrinsic stress vs curvature forms a typical pitchfork bifurcation alluded to
in the opening paragraph and described above. Illustrations can be found in textbooks, for
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Fig. I. Typical pitchfork bifurcation (dashed line unstable mode).
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instance Brush and Almroth (1975). A typical example is shown in Fig. 1, where the dashed
line denotes an unstable response. Plots of actual data can be found in the references.

The focus is solely upon bifurcation. After establishing relations for critical bifurcation
curvature and intrinsic stress, they are transformed from composite plate parameters into
fundamental material parameters. This leads to significant clarity and permits illustration
of bifurcation behavior over a range of material stiffness ratios. Furthermore, special cases
are then easily obtained.

BIFURCATION EQUATIONS

At the point of bifurcation, point B in Fig. 1, stresses and curvatures for the spherical
and ellipsoidal deflected shapes coincide. Hence a: = a: = a~ and a = b = Ks where sub
script B denotes a bifurcation value, as is the intrinsic stress necessary to cause bifurcation
and K s is the critical curvature for bifurcation, both of which occur at the limit of stable
spherical curvature. Equating eqn (7) and substituting the latter into it leads to

(8)

This expression permits calculation of the critical curvature for bifurcation purely in terms
of material and geometric properties of the plate. It is independent of load, which also
includes the initial strain parameter. Substitution of this result back into either of eqn (7)
yields

(9)

where we deliberately insert ± to insure against sign errors between curvature and H~.

Clearly one can invert eqn (9) to obtain curvature in terms of load, the more familiar form
found in buckling theories, but independent of the side-lengths of the plate. In classical
plate theory, if compressive forces are treated as intensities, force/length of side, an ana
logous result is obtained.

Equation (9) and its inverse can also be derived from solutions for ellipsoidal curvature
given by Masters and Salamon (1993).

FUNDAMENTAL PARAMETERS

Let a flat plate with side dimensions X, Y be constructed by bonding a film to the
lateral surface ofa substrate, thicknesses t[ and t" respectively, to form a composite structure
through the thickness. The film and substrate are isotropic materials with shear moduli and
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Poisson's ratios Gr, Vr and G" v" respectively. Then the following dimensionless parameters
are defined:

Grr=
Gs

I +vr
Vr=-

I-vr

I +vsv =-
, I-v,

t rp=-«l.
t,

(10)

It may seem odd to employ shear moduli in a plate-bending problem, but in seeking
compact expressions below, this adoption proved more efficient.

Because the intrinsic stress is assumed uniform through the thickness and the defor
mation mode is bending, for meaningful results, the film must be thin. Hence p « 1.

CURVATURE

The critical curvature for bifurcation is obtained by expanding eqn (8) in terms of
fundamental material properties and substituting parameters given in eqn (10). If a geo
metric composite factor CF squared is first extracted, where

(11 )

then the bifurcation curvature KB squared is found to be

(12)

Square plate
In the case of a square plate, X = Y = L, a nondimensional composite parameter }'

given by

2 2 [rPVr + vJ + 5 [rP (vr+ I) + Vs + I]
}' =

[rpvr+vs] (rp+ 1)2

is uncovered, hence the Greek notation. Then the curvature squared is found to be

(13)

(14)

where the added notation is self evident and L is the side length of the plate.
This geometry being one of common interest is worth further investigation. In the

above equations, the parameter product r p appears in a natural way. Indeed in order-of
magnitude expansions, this product must be considered rather than each factor individually,
because whereas p « 1, r » 1 is very possible. Hence it also is natural to choose it to study
curvature over a range of material combinations. If a nondimensional curvature is defined
as follows:

1+vs
KB

24 (6+vs)
(15)

and plotted vs r p, it will be normalized to unity at r p = 0 (the reason will become clear
subsequently).
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Fig. 2. Bifurcation curvature for a square plate.
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Figure 2 illustrates the variation of nondimensional curvature given by eqn (15) over
the range 0 :( r p :( 10 and for the set of parameters listed in the table inset in the figure.
Over this range, the selection is sufficient to see the extremes in behavior. The lowest and
highest curves shown are very close to lower and upper bounds, respectively. For p > 0.01
and (Vf, v,) = (0,0.5), the effect of p becomes pronounced, however magnitudes approaching
0.1 are probably stretching the assumption of small values; for p < 0.01, its effect on the
lower curves is small, almost nil. When Poisson ratios are equal, the effect of p on the
curves is nil (see below). For values of r p < 1 (the precise location of the peaks is rather
cumbersome to evaluate), the bifurcation curvature increases with r p. Beyond the peaks,
it decays very slowly. If p is held constant, then as r becomes large, associated with
combinations of very stiff films on very compliant substrates, the curvature required to
buckle the plate becomes very small, on the order of pl. When r p, rand/or p vanishes, the
curvature becomes

24 (6+vs)

1+vs

(16)

which explains the normalization above.
Equation (16) represents the case of a homogeneous plate with a uniform distribution

of bidirectional initial shear stress on one lateral surface. It is difficult to relate this result
to existing results for simply-supported plates under compressive loads because (1) the
problems are different, and (2) the applied edge forces must be transformed into edge
moments to obtain curvature, and this involves consideration of deflections and/or eccen
tricities in the position of the forces. Nevertheless the problems are similar. Referring to
Brush and Almroth (1975) for instance, the curvature for Euler buckling ofa square, simply
supported plate under uniform, combined loading works out to be

(17)

where c is a correction factor. These equations are only similar in form, but more is said
below [eqn (25)].

SAS 31:3/4-N
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Equal Poisson ratios
When the Poisson ratios are equal, Vr = Vs = v, and the geometries are rectangular, the

composite factor becomes

(18)

where v is Poisson's ratio. This can be substituted directly into eqn (12) to obtain the
curvature.

For a square plate,

(19)

which can be substituted into eqn (14) to obtain the curvature.

INTRINSIC STRESS

The intrinsic stress level necessary for bifurcation is obtained by expanding eqn (9) in
terms of fundamental material properties and substituting parameters given in eqn (10). If
the nondimensional parameter groups

111 = (rpvr+vs) (rp3 + 1) 112 = (rp 2vr- vs)2

rp(1+p)2
113 = rp+l [rpvr(4vs+3)+vs(4vr+3)]

are first extracted, then the intrinsic stress required for bifurcation is

(20)

(21)

where the curvature is found from eqn (12),8* with subscripts f and s denotes initial strain
in the film and substrate, respectively, and ± is again deliberately inserted to insure against
sign errors in calculation. One observes that initial strain plays a very simple role in the
generation of stress. Physically it is the mismatch in material properties that causes it.
Hence if r = 0, initial strains have no effect.

Square plate
The intrinsic stress necessary for bifurcation of a square plate (X = Y = L) can be

computed from eqn (21) by substituting the curvature from eqn (14) in place of that from
eqn (12). Since the effect of the initial strains is evident, it will be ignored in illustrating the
variation of intrinsic stress with system parameters. A nondimensional intrinsic stress
necessary for bifurcation is defined as

(22)

where CT:IL is the intrinsic stress required to bifurcate a square plate, i.e. eqn (21), with
curvature taken from eqn (14). When plotted against r p, eqn (22) will be normalized to
unity at the origin (the scale factor will be made clear below).
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Fig. 3. Bifurcation stress for a square plate.

Figure 3 illustrates the variation of nondimensional intrinsic stress given by eqn (22)
over the range 0 ~ r p ~ 10 and for the set of parameters listed in the table inset in the
figure. Over this range, the selection is sufficient to see the extremes in behavior. The lowest
and highest curves shown are very close to lower and upper bounds, respectively. The
intrinsic stresses are monotonically increasing with r p; for an infinite film-to-substrate
stiffness ratio, the intrinsic stress necessary to bifurcate the plate is likewise infinite (recall
that the bifurcation curvature only vanishes if p vanishes). Hence the factors L'1i in eqn
(21) overpower the bifurcation curvature. This is manifested in the order in which curves
common to Figs 2 and 3 appear. The curves labeled CI -> C4 in Fig. 2 are ordered top to
bottom from most to least compliant plates; those at the top reach larger critical curvatures
to bifurcate. For the most part, ignoring small variations caused by p, in Fig. 3 the curves
labeled C are reversed in order; the more compliant plates (lower curves) require less
intrinsic stress for bifurcation. With increasing p, larger intrinsic stresses are required for
bifurcation (compare SI, S2 with C3, C4), but the effect for p ~ 0.01 is nil.

When r vanishes, the intrinsic bifurcation stress becomes

(23)*1 - 4j6Gst; J6+Vs

O'B L.r=o - 3L2 p (1 +p) (1-v
s
) I+v:

which explains the scale factor in eqn (22). It is noted that the stress becomes infinite as
p ->0.

Equation (23) represents an initial stress uniformly distributed in a thin surface layer
necessary to buckle a homogeneous plate. If one reverts to physical variables p = tclts and
lets tr -> 0 as 0': -> Cf) so that the product trO': -> PB , which is a shear force intensity in units
of force/length of side, then on the one hand, the bidirectional force intensity, distributed
over an infinitesimally thin surface layer, necessary to buckle a homogeneous plate becomes

(24)

where Es is the modulus of elasticity for the substrate.
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On the other hand, the Euler buckling load for a square, simply supported homo
geneous plate under combined uniform compressive force intensity distributed around plate
edges, Brush and Almroth (1975), is

(25)

Interestingly the difference between eqns (24) and (25) is primarily the material factor

J(6+vs)/(1+vs). Again the difference between the two problems should be noted. Since
eqn (24) determines a load distributed over a lateral plate surface, that is a load eccentrically
positioned with respect to its middle surface, it fits into the class of problems for plates with
imperfections. As such one would expect magnitudes of Pa generated by eqn (24) to be less
than those from eqn (25), but they are not. However the loading in eqn (25) is a concentrated
line load over the edges, hence magnitudes lower than eqn (24) would generate equal
curvatures. So there is no contradiction. Comparison is further complicated by the different
boundary conditions.

Equal Poisson ratios
When the Poisson ratios are equal, Vf = Vs = v, and the geometries rectangular, the

intrinsic stress for bifurcation is

O':lv = 3p 7ts~P) [(rp+ 1) (rp3 + I) +v(rp2_1)2

+r p (1 +p)2 (4v +3)](± KB)I, +2Gsrv(er-e~), (26)

where eqns (12) and (18) are to be employed for the curvature.
For a square plate, eqn (26) also applies, but eqns (14) and (19) are to be employed

for the curvature.

CONCLUSION

Formulae for the bifurcation of free-free, rectangular, isotropic, thin film/substrate
plates under the action of intrinsic film stress and initial strain are developed. The formulae
are in terms of fundamental material properties and plate parameters and are presented in
a compact form. In the limit ofa vanishing film thickness, the problem reduces to bifurcation
of a homogeneous plate under a uniform distribution of bidirectional shear load intensity
over one lateral surface; interestingly, these results are similar to classical results for
buckling of homogeneous, simply supported plates under combined edge loading, even
though the problems are different.

Limiting cases for square plates and equal Poisson ratios are studied in more detail.
The product of the material stiffness ratio times the film-to-substrate thickness ratio,
denoted r p, which appears naturally in the analysis, is the independent variable chosen for
investigating different material combinations. When plotted against r p, it is found that the
critical curvature at bifurcation rises to a peak value when the product is less than unity,
then slowly decays to a small value as r p approaches infinity. For a constant film thickness,
this implies that when r p is to the left of this peak, increasing the film stiffness increases
the flexibility of the composite system, which is contrary to intuition; for r p to the right of
the peak, conservatively for r p ?: I, increasing stiffness in films less compliant than the
substrate increases stiffness of the system. It is noted that r p < 1 does not imply a more
compliant film since p < 1, hence p must be considered in determining compliance ratios.

The intrinsic stress necessary for bifurcation rises monotonically with r p. Thus stiff
ening and/or thickening the film, for instance, increases the resistance to bifurcation.
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A reduction in the elastic constants necessary to describe composite behavior similar
to the Dundurs constants (Gerstner and Dundurs, 1969), which appear in plane and
axisymmetric, infinite space problems were not discovered.

The formulae presented are compact and open to analysis. Their basis rests upon a
reasonably accurate, but conservative theory for bifurcation.
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APPENDIX

where

f
"'2

[A] =-"!2 [Q"] dz, [Bj = [:/2 [Qnjz dz, f'"[D] = .- [Q"]Z2 dz
-h/2

and

{N,*} = f',!' [Qn]{£*} dz,
-hi2

{M:} = [:2 [Qn]{8*}Z dz.

f'"
{N:} = -hi2 {O'*} dz,

f
'i2

{M:} = '. {O'*}zdz.
-1112


